Effect of curcumin on the modulation of αA- and αB-crystallin and heat shock protein 70 in selenium-induced cataractogenesis in Wistar rat pups

نویسندگان

  • R. Manikandan
  • M. Beulaja
  • R. Thiagarajan
  • M. Arumugam
چکیده

PURPOSE To investigate the expression of αA- and αB-crystallin and heat shock protein 70 (Hsp 70) during curcumin treatment of selenium-induced cataractogenesis in Wistar rat pups. METHODS Group I Wistar rat pups received only saline and served as the control. Group II Wistar rat pups were intraperitoneally injected with selenium (15 µM/kg bodyweight) to induce cataract. Group III Wistar rat pups also underwent selenium-induced cataract but were cotreated with 75 mg/kg body weight of curcumin (single oral dose). Group IV Wistar rat pups with selenium-induced cataract were post-treated with curcumin at the group III dosage 24 h after selenium administration. Group V Wistar rat pups with selenium-induced cataract were pretreated with curcumin at the group III dosage 24 h before selenium administration. RESULTS This study found higher levels of αA- and αB-crystallin and Hsp 70 in lenses injected with selenium alone (group II) than in control lenses (group I). Similar results were observed in the group III and IV lenses. In contrast, in group V, the presence of curcumin 24 h before selenium injection decreased the αA- and αB-crystallin and Hsp 70 levels to almost the same as those found in group I lenses. CONCLUSIONS Curcumin suppressed the expression of selenite-induced αA- and αB-crystallin and Hsp 70, and may therefore suppress cataract formation in rat pups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

αA-crystallin and αB-crystallin reside in separate subcellular compartments in the developing ocular lens.

αA-Crystallin (αA) and αB-crystallin (αB), the two prominent members of the small heat shock family of proteins are considered to be two subunits of one multimeric protein, α-crystallin, within the ocular lens. Outside of the ocular lens, however, αA and αB are known to be two independent proteins, with mutually exclusive expression in many tissues. This dichotomous view is buoyed by the high e...

متن کامل

Chaperone peptides of α-crystallin inhibit epithelial cell apoptosis, protein insolubilization, and opacification in experimental cataracts.

α-Crystallin is a member of the small heat-shock protein (sHSP) family and consists of two subunits, αA and αB. Both αA- and αB-crystallin act as chaperones and anti-apoptotic proteins. Previous studies have identified the peptide (70)KFVIFLDVKHFSPEDLTVK(88) in αA-crystallin and the peptide (73)DRFSVNLDVKHFSPEELKVK(92) in αB-crystallin as mini-chaperones. In the human lens, lysine 70 (Lys(70)) ...

متن کامل

Correction: In Vivo Substrates of the Lens Molecular Chaperones αA-Crystallin and αB-Crystallin

αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract forma...

متن کامل

Small Heat Shock Protein αA-Crystallin Prevents Photoreceptor Degeneration in Experimental Autoimmune Uveitis

The small heat shock protein, αA-crystallin null (αA-/-) mice are known to be more prone to retinal degeneration than the wild type mice in Experimental Autoimmune Uveoretinitis (EAU). In this report we demonstrate that intravenous administration of αA preserves retinal architecture and prevents photoreceptor damage in EAU. Interestingly, only αA and not αB-crystallin (αB), a closely related sm...

متن کامل

Hydroimidazolone Modification of the Conserved Arg12 in Small Heat Shock Proteins: Studies on the Structure and Chaperone Function Using Mutant Mimics

Methylglyoxal (MGO) is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2011